Far-Infrared Spectroscopy of the Troposphere - FIRST -

Marty Mlynczak & Dave Johnson NASA Langley

May 7, 2008
CERES Science Team Meeting

Acknowledgement: Sponsors & Partners

- NASA ESTO
- NASA Radiation Sciences Program
- NASA UARP
- NASA Langley
- Space Dynamics Laboratory
- Harvard Smithsonian Center for Astrophysics
- Raytheon Vision Systems
- ITT
- DRS Technologies
- JPL
- NIST
- U. Wisconsin
- Imperial College
- Numerous members of scientific community

Overarching Objectives

- To improve understanding Earth's climate and climate change through a combination of new observations and innovative data analysis
- Work focuses on:
 - "Far-Infrared" part of the spectrum 15 100 μm
 - FIRST; INFLAME; CORSAIR; FIDTAP
 - Solar spectrum via measurement of atmospheric heating rates
 - INFLAME
- Approach:
 - Develop new technology where needed (IIP, ATI, ACT)
 - Exploit existing data sets as applicable (EOS, IIP)
 - Generate new data sets to fill voids in knowledge (CLARREO)

Demonstrate accurate, stable instruments & related technology for space based on well-defined science measurement objectives

Overview

Since 2001 six projects have been funded by NASA:

- IIP's
 - FIRST (IIP 2001)
 - INFLAME (IIP 2004)
 - **CORSAIR (IIP 2007)**
- Advanced Technology Initiative (ATI)
 - FIDTAP (2006-2008)
- Campaigns (NASA Radiation Sciences Program)
 - FORGE/RHUBC
 - Wisconsin 2007
 - Atacama Desert, Chile, 2009
- Data analysis (EOS Science Team Re-Competition)
 - CERES/AIRS analysis and Far-IR residuals

Where we are now

- FIRST instrument
 - Demonstrated beamsplitter, FTS, focal plane technologies for far-IR
 - Participating in science campaign (FORGE/RHUBC)
 - Successful comparison against AERI; AIRS
 - Unique testbed available for evaluating new detectors, blackbodies, etc.
- INFLAME instruments
 - Entering build and calibration phase flight demo in January 2009
- FIDTAP
 - Successfully demonstrates new far-IR detectors April 2008
- CORSAIR selected
- CERES/AIRS far-IR studies well underway

Instrument Incubator Program - IIP Far-Infrared Spectroscopy of the Tropsophere - FIRST

Description and Objectives

Measure the Far-Infrared spectrum of the Atmosphere and Earth (10 to 100 μm)

Far-IR observations are the key to understanding the greenhouse effect and the radiative feedbacks associated with increased anthropogenic forcings

Far-IR key to understanding cirrus effects, etc.

<u>Approach</u>

• Simulate space environ.

- Develop
 - High-throughput Michelson FTS
 - Broad-bandpass beamsplitter
 - Advanced detector system

<u>Partners</u>

Utah State Univ. – Interferometer Harvard SAO – Beamsplitters 19-member science advisory team

FIRST spectrum from flight demo 7 June 2005 Complete infrared spectrum observed

Status

6/2005 – Successful flight demo/balloon flight 9/2006 – Second flight for CALIPSO validation 3/2007 – Ground calibration vs. AERI at UW 4/-10/2009 - RHUBC/FORGE campaign Chile 10/2010 - CORSAIR detector evaluation @ LaRC

Journal articles forthcoming

FIRST Radiances June 2005 and September 2006 - Clear Sky -

Cause of Far-IR Radiance Differences 2006 - 2005

Lower troposphere much cooler

Mid-troposphere much drier

FIRST & AIRS Radiance comparison

FIRST 820 cm⁻¹ Brightness Temperature 250 m MODIS Visible Imagery

June 7, 2005

September 18, 2006; Note clouds in image

Brightness Temperature at 875 cm⁻¹

Comparison of FIRST Cloudy and Clear Spectra September 2006

Far-Infrared

Mid-Infrared

FIRST at University of Wisconsin March 2007

FIRST port-

AERI port

Detector dewar-

Zenith port

Spectrometer

Electronics

AERI - FIRST Detail

AERI & FIRST Comparison

RHUBC/FORGE

- August to October 2009
- Chajnantor, Chile
- ARM Mobile Facility; FIRST; other instruments
- Radiosondes launched during daily observing periods
- Science
 - Spectroscopy of far-IR
 - Radiative cooling
 - Cirrus forcing
 - Extensive cross-calibration against AERI-ER
 - Extensive evaluation against LBL codes

RHUBC/FORGE Ground-based, Uplooking, Low H₂O

View from Chajnantor, Chile site for RHUBC/FORGE H = 17,500 feet; p = 500 mb; $H_2O < 0.4$ mm

Calibrated Observations of Radiance Spectra from the Atmosphere in the far-InfraRed - CORSAIR

Major Technology Elements

- Passively Cooled Detectors (Raytheon Vision Systems)
 - Antenna Coupled Terahertz Devices
 - Potential for 100 to 1000 times more sensitive (D*) than pyroelectric
- SI Traceable Blackbodies in Far-IR (SDL; NIST)
 - Flight prototype blackbody w/ well-characterized emissivity
 - On-orbit emissivity monitor in far-IR
- Broad Bandpass Beamsplitters (ITT)
 - Cover 5 to 50 μm region in 1 beamsplitter
 - Potentially enables 1 instrument to cover CLARREO range
- Detector evaluation to take place in FIRST @ Langley in Year 3
 - LaRC; JPL; Raytheon

Langley Projects and Relation to CLARREO

Sensor Technology and Science

FIRST

- Far-IR FTS, beamsplitter
- Calibration
- Focal plane design

INFLAME

Highly stable FTS design

CORSAIR

- High sensitivity, uncooled det's.
- Calibrated, SI traceable BB's in far-IR
- Efficient, broad bandpass beamsplitter

FIDTAP

 Sensitive, broadband, cryogenic, far-IR detectors

CLARREO

CERES/AIRS

Assess far-IR/TOA radiation balance

RHUBC/FORGE

- Cross-calibration
- Cirrus radiative forcing
- Radiative cooling
- Spectroscopy